西安交通大学 获得陶瓷电容器储能密度最高值

   2020-06-18 中国科学报

30

核心提示:近日,西安交通大学电信学部徐卓、李飞课题组基于钙钛矿晶体电致伸缩效应的各向异性特点,提出了一种新的设计思路,即通过控制晶

近日,西安交通大学电信学部徐卓、李飞课题组基于钙钛矿晶体电致伸缩效应的各向异性特点,提出了一种新的设计思路,即通过控制晶粒取向,降低陶瓷电容器在强场下所产生的应变和应力,避免微裂纹和拉伸应力所导致的陶瓷击穿,从而提高其击穿电场强度和储能密度,获得目前已知陶瓷电容器的最高值。相关成果于6月15日在线发表于《自然—材料》。

作为一种重要的储能电子元件,陶瓷电容器具有放电功率高、温度稳定性好和循环寿命长等优点,在先进电子和电力系统中起着至关重要的作用,特别是在脉冲功率技术领域有着不可替代的应用。当前,电子器件正向小型化、轻型化方向发展,这也对陶瓷电容器的储能密度提出了更高的要求。

研究人员介绍,为了实现这一想法,课题组通过近2年的技术攻关,首次合成了取向的钛酸锶模板,进而,利用流延—模板法成功制备了织构度达91%的高质量取向钛酸锶铋钠多层织构陶瓷电容器,大幅降低了陶瓷在强场下的电致应变,提高了击穿电场,获得了高达21.5 J cm-3的储能密度,也是目前已知陶瓷电容器的最高值。

另外,该项研究提出的材料设计思路,可广泛应用于其他电子功能陶瓷,如基于电卡效应的固态制冷陶瓷等,提高它们在强场条件下工作的稳定性和可靠性。

相关论文信息:https://doi.org/10.1038/s41563-020-0704-x



本网转载自其它媒体的文章及图片,目的在于弘扬石油化工精神,传递更多石油化工信息,宣传国家石油化工政策,推广石油化工企业品牌和产品,并不代表本网赞同其观点和对其真实性负责,在此我们谨向原作者和原媒体致以敬意。如果您认为本站文章及图片侵犯了您的版权,请与我们联系,我们将第一时间删除。
 
 
更多>同类资讯
推荐图文
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用说明  |  隐私政策  |  免责声明  |  网站地图  |   |  工信部粤ICP备05102027号

粤公网安备 44040202001354号