近日,北京大学发布消息,《自然》杂志2月12日刊发了一项颠覆性催化技术突破:北京大学马丁教授课题组与中国科学院大学周武教授课题组合作,开发出全球首例兼具超高活性与超长稳定性的甲醇-水重整制氢催化剂。该研究通过独创的稀土氧化物“纳米防护盾”技术,将铂基催化剂的持续工作时间提升至1000小时以上,催化转化数突破1500万次大关。
在甲醇-水重整产氢反应体系中,传统铂/立方相碳化钼催化剂(Pt/α-MoC)虽在低温条件下展现卓越制氢效率和超高催化活性,但活性载体遇水氧化导致结构退化的问题始终无解——这直接造成现有催化剂平均寿命不足200小时。研究团队聚焦困扰催化领域多年的“活性-稳定性权衡”难题,针对Pt/α-MoC体系存在的致命缺陷展开攻关。
研究团队首次实现了对催化剂活性位点的分子级精准防护,创造性地在Pt/γ-Mo₂N催化剂表面构筑镧系氧化物纳米覆盖层,形成三重防护机制:物理屏障,薄至单原子厚的惰性La₂O₃层隔绝水分子与高活性载体直接接触;结构调控:稀土保护层阻止Pt物种的迁移和聚集;位点锁定:选择性覆盖非必要表面位点,保留关键催化活性界面。
这种“精准防护”理念带来惊人效果:在240°C反应条件下,新型Pt/La-Mo₂N催化剂的衰减速率较传统催化剂降低两个数量级,持续运行42天后仍保持98%以上初始活性;1500万的催化转化数更是刷新该领域世界纪录,相当于单个Pt原子在运行周期内可以制备超过1500万个氢气分子,为长期稳定制氢提供技术保障。
此外,该研究展现出强大的拓展性,证实钇(Y)、镨(Pr)、钬(Ho)等稀土元素,甚至锶(Sr)等非稀土元素均可构建类似防护层。这种“元素工具箱”特性为定制化催化剂开发提供了无限可能。为未来兼具“高活性、高选择性和高稳定性”的高性能界面催化剂的设计提供了全新思路。
该技术突破不仅使生物甲醇等绿色氢源的大规模应用成为可能,其防护策略还可延伸至氨分解、燃料电池、可持续化学工业等关键领域,为全球能源转型提供可能方案。
免责声明:本网转载自其它媒体的文章及图片,目的在于弘扬石油化工精神,宣传国家石油化工政策,展示国家石油化工产业形象,传递更多石油化工信息,推广石油化工企业品牌和产品,并不代表本网赞同其观点和对其真实性负责,在此我们谨向原作者和原媒体致以崇高敬意。如果您认为本站文章及图片侵犯了您的版权,请与我们联系,我们将第一时间删除。